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Theory of molecular motions in flexible nematogens 
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Department of Physical Chemistry, University of Padova, via Loredan 2, 

35131 Padova, Italy 
1 Institute of Physical Chemistry, University of Parma, viale delle Scienze, 

43100 Parma, Italy 

(Received 12 March 1990; accepted 20 May 1990) 

Liquid crystal phases are typically formed by molecules having several degrees 
of internal freedom. These systems exhibit, therefore, complex dynamics, with 
internal motions superimposed on the rotational diffusion of the whole molecule. 
The problem of the internal transitions has been treated in terms of a master 
equation for jumps between configurational sites, derived by projecting the multi- 
dimensional diffusion equation for the torsional variables on a suitable set of site 
functions. The coupling with the overall diffusion has been taken into account 
explicitly, by considering the conformational dependence of both the mean field 
torque and the molecular diffusion tensor. A Marcelja-like potential acting on the 
various molecular moieties has been used, and the frictional effects have been 
calculated for the different chain conformations. In this way, the tates for the 
internal transitions are orientation dependent, and the solution of the diffusional 
problem requires a matrix representation in the full space of angular and site 
functions. The nematogen 4-n-pentyl-4’-cyanobiphenyl, for which a large amount 
of experimental data is available from detailed NMR relaxation measurements, is 
taken as a reference system. The spectral densities of the relevant correlation 
functions for the deuterons in the various positions of the molecule have been 
calculated, for different degrees of ordering and different choices of the energetic 
and hydrodynamic parameters. 

1. Introduction 
The theoretical analysis of the dynamical processes occurring in liquids composed 

of molecules with internal degrees of freedom is a difficult task, which requires 
sophisticated mathematical tools and heavy computational procedures. Researches in 
this field are, however, stimulated by the large amount of experimental data, collected 
by N M R  techniques in liquid crystal phases [I-31, where suitable selections of pulse 
sequences can supply the spectral densities of independent angular correlation func- 
tions, for the different nuclear positions in the molecules. Such a richness of data is 
a challenge for the development of theoretical methods, able to provide unifying 
interpretations without resorting to phenomenological approaches. In general, the 
theoretical treatments used to interpret N M R  relaxation in non-rigid molecules are 
essentially a n  extension of a method originarily proposed by Woessner [4]. All 
motions are decoupled, that is the rotational diffusion of the whole system and  
rotations about each bond of the flexible chain are assumed to be mutually independent. 
In addition, not only the diffusion tensor components, but also the correlation fre- 
quencies characterizing the torsional motions of the various chain segments are taken 
as phenomenological parameters. 
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594 A. Ferrarini et al. 

In our work, we have adopted an ab initio approach, that is we have chosen to 
examine all of the physical implications of a mathematical model in which the 
parameters are defined unambiguously. The mathematical model rests upon a multi- 
dimensional diffusion equation, which has already been tested for molecules with 
aliphatic tails in isotropic solutions [5,6] and for phospholipid chains anchored to a 
bilayer surface in a membrane environment [7]. Here the model is developed to take 
into account in all generality the anisotropic tumblings and conformational motions. 
Its salient features are: 

(i) The rotational motion is described by a diffusion equation, the effect of the 
anisotropic interactions typical of a liquid crystal being mimicked by a mean 
field potential. The effective potential, the diffusion tensor components and 
the diffusion principal axes are calculated for each configuration of the 
molecule. 

(ii) The conformational processes are also described with the assumption of a 
diffusional regime. Starting from a multivariate diffusion equation, asymptotic 
solutions valid for relatively high barriers of the conformational potential 
lead to a master equation for configurational jumps, in which the transition 
rates are calculated by generalizing the Kramers theory of activated processes 
[8] to the multidimensional case [9]. The couplings between the torsional 
variables due to the configurational potential and the configuration- 
dependent frictional effects are fully considered. 

(iii) The extra coupling between torsional and orientational variables, induced by 
the presence of the mean field potential in liquid crystal phases, is also 
explicitly considered. 

In this way, all of the parameters entering the theory are well defined at the molecular 
level, depending upon geometrical, energetic and hydrodynamical properties of the 
system. 

Obviously, a number of underlying assumptions have to be made implicitly. The 
inertial contributions in the chain motions have been ignored, but dominant effects 
of this nature are not expected for liquid butane [lo], and they are, therefore, even less 
likely in the relatively viscous melts of 4-n-pentyl-4’-cyanobiphenyl (5CB). Inertial 
contributions for rotations about the long molecular axis might be of some import- 
ance, and they could provide an explanation for the anomalous ratio of the spectral 
densities f ,  and y2 observed in rigid molecular probes [l 11. The reduction of the full 
diffusion equation, defined in the space of torsional variables, to a master equation 
for the conformational transitions, is equivalent to an extension to the time domain 
of the rotational isomeric state (RIS) approximation [12]. As a result, the fast 
fluctuations inside the potential wells are neglected. The inherent RIS limitations, 
widely discussed in [7], should have no serious consequences for the short chains 
considered here. Also the viscosity anisotropy, invoked to interpret the intriguing values 
of the ratio Y,/Y2 already mentioned [l I], is expected to have negligible effects, as 
investigated elsewhere [13]. It was in fact shown that in nematic solvents, orientation- 
dependent frictional effects coupled to the viscosity anisotropy give rise to negligible 
corrections to the spectral densities, for all components of the second rank Wigner 
functions, even at very high order. Finally, recoil rotations of the molecular core due 
to the chain transitions are also neglected. Their introduction would make the 
computational effort, which is already considerably heavy, intolerably high. As we 
shall see, this approximation may have relevant consequences when the frictional 
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Theory 05 molecular motions in flexible nematogens 595 

forces opposing the chain conformational changes are of the same order of magnitude 
of those opposing the reorientations of the molecular cores. 

2. Theory 
2.1. Coupled model 

The model system consists of a rigid core, which can be made up of one or more 
benzene rings, and an attached alkyl chain. In the following the 5CB molecule is taken 
as an example, but the treatment is adequate for many mesogenic species. The 
dynamics of the system is described in terms of reorientations of the whole molecule, 
and rotations around the C-C bonds of the alkyl chain. Thus the relevant variables 
are the Euler angles R, specifying the orientation in the laboratory frame of a 
molecular frame fixed in the aromatic moiety, and the set of torsional angles a ,  
defining the internal configuration of the chain. 

Overall and internal rotations are assumed to be independent. In principle, the 
frictional couplings between overall and internal motions, which give rise to recoils 
accompanying the rotations about the C-C bonds, should be taken into account [ 141. 
They become negligible if the frictional resistance of the rigid fragment is much higher 
than that of the flexible tail, and this may not be the case for our systems, as it will 
be discussed later. The time evolution of the system is described by the probability 
distribution function P(a, R, t ) ,  according to 

where Re and f?' are the evolution time operators for the external motions, that is the 
overall reorientation of the molecule, and the internal motions, respectively. If both 
kinds of dynamic processes are assumed to be diffusive in character, we can write 

de = - D"(a)P(a, R) * t P ( a ,  R)-'  ( 2 )  

and 

In these equations D" and D represent the diffusion tensors for the whole molecule 
and for the flexible tail, respectively. P(a,  R) is the equilibrium distribution function, 
defined by 

P(a,fl)  = exp[- V ( a , R ) / k T ]  da dQexp[- V ( a , Q ) / k T ] ,  (4) is s 
where V(a,R)  is the potential acting on the molecule at orientation R and in the 
conformation specified by the set of torsional angles a. This potential has a two fold 
origin; in addition to the intramolecular interactions in the alkyl chain, which depend 
on its configuration, in the liquid crystal phases there are forces exerted by 
the anisotropic environment, which have the final effect of introducing preferred 
orientations for the molecule in the different configurations. Therefore we can write 

V(a,R)  = Vmr(a ,R)  + Vlors(a), ( 5 )  

where Vmr(a,  R), mean field potential, and Vlors(a), torsional potential, account for the 
inter- and the intramolecular interactions, respectively. The latter can be assumed to 
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596 A. Ferrarini et al. 

be essentially the same as those acting in an isotropic phase. In this case it is 
well-known that the hypersurface Vors(m)  for an alkyl chain with Ndegrees of internal 
freedom has M (d 3 N )  minima, corresponding to the stable conformers of the chain. 
Then, according to the rotational isomeric state approximation, the continuous 
distribution function can be approximated by a discrete distribution over the stable 
states. 

In our previous work [5] this approximation has been extended to the time 
domain. By a projection of the diffusion equation onto a subspace spanned by a set 
of M site functions, g,(a, Q), localized at  the potential minima, a master equation for 
random jumps among the RIS conformers is obtained; this describes the time evol- 
ution of the system, as long as the fast librational processes inside the potential wells 
can be neglected. By assuming that the intermolecular interactions do not destroy the 
basic features of the torsional potential, we shall use the same approach for the 
molecule in the liquid crystal phase. Then, the potential acting on the J t h  state can 
be written as 

G(Q) = v/"f(Q) + ,:Or, . (6 )  

After projection on the subspace of site functions g,(a, Q) the following expression is 
obtained for the time evolution of P,(Q, t ) ,  the probability distribution function 
relative to the J t h  configuration: 

where @,, and R,, are operators in the space of Euler angles. The operator for the 
overall motion is defined as 

R,(Q) = € * D; * [€ + Lv;l'(Q)], (8) 

where D; z Dw(a,) is the rotational diffusion tensor of the molecule in the J t h  
configuration. 

If only single bond transitions are taken into account, the expression for the 
transition rate from the J'th to the J th  configuration is a generalization of that 
obtained for the isotropic case [5] 

WQ) = (14 1/2n) exp { - [ E m  - E, , (Q) l /W,  (9) 

where E,.(Q) and E,(Q) are the free energies evaluated at  the J'th configuration and 
at the saddle point connecting the two adjacent minima J and J' respectively, defined 
as 

kT E,(Q) 3 V,(Q) + -In I det (V/"/2nkT)I. 
2 

In this expression V ,  is the potential acting on the ith state (which can be a stable 
configuration or a saddle point), and V,") is the matrix of the second derivatives of the 
potential with respect to the torsional angles, calculated at the ith point of con- 
figuration space. Finally, the quantity 1, appearing in equation (9) is the unique 
negative eigenvalue of the matrix product D,V~*)/kT, where k7'D;' is the friction 
matrix for the aliphatic chain at the geometry corresponding to the saddle point. The 
operator fi,,(Q), describing the loss of population from the J th  state, is obtained by 
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imposing the detailed balance condition 

%AQ) = - Q J ( Q ) - l  C @JJ42)QJXQ); (1 1) 
J ' # J  

this assures the existence of a stationary solution, given by the vector Q(R), whose J t h  
element, representing the equilibrium fractional population of the J t h  configuration, 
is defined as 

2 .2 .  Geometry 
The carbon positions of the chain are labelled as C , ,  . . . , C,, moving away from 

the aromatic core towards the free end. The ring carbon bearing the aliphatic chain 
and those bound to hydrogen atoms are denoted by Co and C,, respectively. The 
chain has fixed bond lengths, lcc, and bond angles, 6,, and the aromatic moiety is 
described globally as a rigid body. Each methylene-methylene bond can exist in one 
of the three conformational states: gauche.. (g-), trans (t) and gauche, (g+).  In the 
absence of unambiguous data about the internal potential around the aromatic- 
aliphatic Co-C, bond, different choices have been considered: 

( I )  a single conformation, with the C,  -C, bond on the plane perpendicular to the 

( 2 )  two equivalent states, with the C ,  -C, bond lying on the plane perpendicular 

(3) four equivalent states, symmetrically placed with respect to both the aromatic 

attached phenyl ring; 

to the attached phenyl ring; 

ring and the plane perpendicular to it. 

In order to specify the geometry, the following reference frames are introduced: 

QI.2  Q2.3 %.4 mol- M ,  - M ,  - M ,  - M~ 
l n m o l . R  L % . F  4 n M . F  J%.F 1 n M . F  

R F, F, F, F4 

where mol is a molecular frame, fixed in the benzene ring attached to the aliphatic tail, 
with the z axis along the para direction, and the x axis on the plane of the ring. R is 
a frame having the z axis along an aromatic C-H bond; i t  is obtained from the mol 
frame through the rotation Rmo,,, = (0", 60", 0"). MI is a reference system with the 
z axis along the C,-C, bond and the x axis on the plane bisecting the H-C,-H 
angle; i t  is derived from the molecular frame through the Euler rotation Qmol,,  = 
(a , ,  180" - 6,, 180"). The torsional angle a, can assume different values in cor- 
respondence of the three choices just presented: ( I )  a, = 90"; ( 2 )  a,  = +90"; 
(3) a,  = f (180" - CI), + Cr, where various values of 6 can be chosen. M ,  ( i  = 2,3,4)  
is a frame having the z axis along the C,-C,+, bond, and the x axis on the plane 
bisecting the H-C,-H angle; i t  is related to the M , - ,  system by the Euler angles 
R, ~ ,,, = (ai,  180" - 6,, ISO"), where the angle ai assumes the values - 1 20", 0", 120" 
corresponding to the states g- , t, and g, , respectively. F, is a frame obtained from the 
system Mi through the Euler rotation QM,F = (4,8, O"), which move the z axis to the 
direction of a C,-H bond. 
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598 A, Ferrarini et al. 

2.3. Energetics 
According to the RIS model, the torsional potential acting on the J th  conformation 

can be written as [I21 

,:,,, = n, v, + ngig, V,, (13) 

where n, is the number of gauche states, V p  is the gauche-trans energy difference, ngfgF 
is the number of g, g, sequences and V, is the contribution which accounts for the 
so-called pentane effect. Longer range effects are taken into account by rejecting the 
configurations in which parts of the chain would overlap; for the 5CB molecule this 
leads to the exclusion of the conformers containing g, g, g, sequences. 

According to the model proposed by Marcelja [I51 the nematic mean field poten- 
tial acting on the molecule in the J th  configuration is written as a sum of contributions 
describing the interactions of rigid molecular sub-units with the environment. In the 
simplest approach, the units composing the molecule are the aromatic core, which for 
the 5CB molecule consists of the whole cyanobiphenyl group, and the segments of the 
aliphatic tail [16]. Then we can write 

4 

vJ"'(Q) = + c v;(Q), 
i = O  

where Vcorc represents the potential acting on the core, and is the contribution of 
the ith segment when the molecule is in the J th  configuration. The interactions of the 
various units with the environment are described by second rank tensors, with axial 
symmetry about the para axis for the aromatic core, and along the C-C bonds for the 
chain segments [ 161. If the director is assumed to be parallel to the laboratory Z axis, 
the two kinds of contributions are expressed by 

YCO"/kT = - @af(n) (15) 

v; /kT = -&9&)(#), (16) 

and 

where the parameters 4 and E are the major principal components of the interaction 
tensors for the core and the chain respectively, and are the Euler angles which 
relate the laboratory frame to the local frame Mi when the molecule is in the J t h  
configuration (the choice of the numerical values will be discussed later). If all of the 
tensorial interactions are transformed to the same molecular frame, the mean field 
potential v/' can be written as 

where 

and Q;,,., are the Euler angles from the molecular frame to the local frame Mi. From 
equation (18) it appears that the potential acting on the molecule in a given con- 
figuration, is in general completely asymmetric in the molecular frame. For com- 
putational purposes, it is convenient to introduce, for each configuration, the principal 
axis system of the molecular interaction tensor. In this frame, which will be called the 
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Theory of molecular motions in flexible nematogens 599 

ordering frame, because it is also the principal frame of the ordering matrix, we can 
write 

v/"'(Qord)/kT = - G d & ( b o r d )  - 2n:&(bord) cos (2Yord), (19) 

where Qord are the Euler angles for the transformation from the laboratory to the 
ordering frame. They are derived from the Euler matrix E, defined by 

where j o  and j are the matrices of the Cartesian components of the interaction tensor 
in the ordering and in the molecular frame, respectively. 

2.4. Uncoupled model 
In the standard treatment, both equilibrium averages and time dependent values 

of tensorial interactions located at the various segments in chain molecules are 
calculated by neglecting the coupling of orientational and torsional variables due to 
the mean field potential [7,17]. This assumption is taken in general because of the 
noticeable simplification it introduces in the computations. Actually, i t  should be 
noticed that the coupled and the uncoupled models describe different physical situ- 
ations: in the former case the segments tend to be aligned along the director, while in 
the latter the preferred orientation is a molecular axis. Although less tractable from 
a mathematical point of view, the coupled model seems to be more realistic on 
physical grounds, because it is consistent with the theories of molecular orientation 
in nematics. Only in the limiting case of a mean field acting on the core much higher 
than the segmental field, do the two approaches become equivalent, as shown by the 
following argument. 

I f  Q, is the preferred orientation of the molecular frame, then we can write 

K(Q) = V,,' + V'(O), (21) 

where VJ"' and v'(Q), which will be referred to as internal and external contribu- 
tions, respectively, are given by 

4 

VJ,' = ,:Or, + c v;(Q,) 
i = l  

and 
4 

vJ'"'Q) = VCO"(Q) + VO(Q) + c [v;(Q) - V,(Q)] .  (23) 
i = l  

The third term in this equation describes the segmental energy fluctuations induced 
by deviations of the orientation with respect to a,. Since the C,-C, bond direction 
lies along the molecular z axis, the potential term V o ( Q )  does not depend upon the 
chain configuration, according to equation (16). For a very strong mean field acting 
on the core, the weaker dependence of v' on the torsional angles can be neglected, 
and the potential is approximated by 

with 

Vex'(,) = + V"Q) 
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600 A. Ferrarini et al. 

and en' independent of the orientation 0. According to equations (15) and (16) we 
can write 

,,,'(a) = -q'@)(Q), (26) 
where the parameter q' gives the intensity of the mean field for the molecular fragment 
(aromatic core plus C,-C, bond) whose geometry is essentially unaltered by the 
conformational changes. It is the major component of a tensor, axially symmetric 
with respect to the para axis, and is expected to be of the order of q + E .  

Under the decoupling approximation the probability distribution function can be 
factorized as 

P,(Q, t )  = PJ"'(t)P'"((R, t ) .  (27) 
The time evolution of the probability for the internal variables is described by 

where the transition rate from the J'th to the J th  configuration is given by an 
expression analogous to equation (9), if the free energies are replaced by internal free 
energies. Note that W,,. turns out to be independent of the orientation, with this 
approximation. The orientational probability distribution obeys to the equation 

the diffusion operator &(Q) being defined by an equation of the same form as equation 
(8), where a configuration independent diffusion tensor D" appears, and the mean 
field potential v;l' is replaced by the external potential V'"'. 

3. Average values and spectral densities 
3.1. Coupled model 

The calculated quantities are equilibrium average of Wigner functions, 

and spectral densities for the corresponding correlation functions, 
m 

Y m ( 4  = Re s, d texp( - io t ) (~ ,$ (Q, , , t )9 , (Q , , ,O)*  - l~,$(QF,)12)3 (31) 

where the Euler angles QF, describe the transformation from the laboratory frame to 
the local frame Fi, having the z axis along a C,-H bond. The problem is solved by 
expanding functions and operators in a basis which is the direct product of the set of 
localized functions g,(cr, R)P"'(a, n) introduced previously and a set of modified 
Wigner functions 

Because of the convenience of working with symmetric matrices, the symmetrized 
operators e,,(Q) and k,(Q) are introduced 

= ,/[(21 + 1)/(8n2)]9At(R). 

h, (Q) = P, (Q) - I ' 2 1 i J  P,(Q)'/'. ( 3 3 )  
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The average values 9,$(QF,) are given by 

where ql/’ and di) are representations of the square root of the equilibrium distribution 
P”’(a, Q) and of P”’(a, Q)9f(QF,) respectively. Here and in the following the daggers 
are used to denote the adjoints of vectors and matrices. Analogously, the spectral 
densities are calculated as 

yk)(m) = Gdi)t[iml + R + W]-’Gdk), ( 3 5 )  

where R and W are the representations of the symmetrized time evolution operators 
and Sd;) is the deviation of dk)  from its average value. Because of the form of the mean 
field potential, (see equation ( 1  7)), the elements of the vectors 4”’ and d i )  and of the 
matrices and W in this basis are in general complex, and are given by 

( 4 ! n k ( n )  I Q:”(Q>> = G m , 0 ( 4 ! n k ( Q )  I Q:”(Q)>, (36) 

( d l k ( Q )  I QJ”(Q>9,$<Qi,>> = dm,ml ( 4 ! n l k ( R )  I Qi”(Q>QL(Q’,,)>, (37) 

( 4 ~ l k l ( n ) l [ R ( Q )  + w ( Q ) l J J ’ 1 4 i 2 k > ( Q ) >  = Gm1,m2 { d J , J ‘ ( 4 : l k l  ( n ) l i i J ( s z ) 1 4 i l k 2 ( n ) >  

+ ( 4: I k lWJJ’ I dil k2 (Q)> }. (3 8, 

The overall motion is described as axially symmetric rotational diffusion. The 
principal axes of the diffusion tensor D“ are assumed to coincide with those of the 
molecular ordering matrix S, and therefore they change with the configuration of the 
chain. The principal values D,, and D, are assumed to be independent of the value 
of the torsional angles. It is convenient to perform a transformation, for each con- 
figuration, from the molecular to the ordering frame, where the motion can be 
described as axially symmetric rotational diffusion of a biaxial body. Alternatively, 
the principal axes of the diffusion tensor, again assumed to be axially symmetric, 
might be chosen along the axes of the molecular frame. In this case the diffusion tensor 
is independent of the configuration (DY = D”), even though each configuration 
diffuses in a completely asymmetric mean field potential. 

Now, let us see in more detail the operators for internal motions. Since only single 
bond transitions are considered, the operator q,. is zero, unless the two con- 
figurations denoted by J and J ’  differ only by the state of one bond. In view of the 
high barrier between two g states, for the methylene-methylene bonds only g, $ t 
transitions are taken into account. For the aromatic-aliphatic bond, in corre- 
spondence of the three options presented previously we assume that: ( I )  no transition 
is possible; (2) there are 180” jumps; (3) only transitions from one site to an adjacent 
one are possible. 

The elements of the transition matrix W are calculated according to a param- 
etrization procedure outlined in [5 ] .  The energies of the stable states are defined in 
terms of the parameters vg = VJkT, vp = Vp/kT,  E and q. The matrices of the second 
derivatives of the potential in the stable configurations are assumed to be diagonal 
and proportional to the unit matrix, Vj’) = lL$, where VAf’ is a positive quantity, 
independent of J .  The same positive curvature V,,? is assumed for the non-reactive 
bonds at the saddle points, while a negative second derivative K(’) is associated with 
the reactive torsional variable, whose value is modified by a conformational tran- 
sition. Actually, only the parameter p = K(’)/V:?), enters into the calculations. At the 
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602 A. Ferrarini et al. 

saddle points we assume, in addition to a barrier deriving from the torsional potential, 
a mean field contribution which is the average of the effects on the two connected 
states. Then, the calculations are conveniently performed in terms of a frequency w, 
related to the g -+ t isomerization rate for a system with a single torsional degree of 
freedom, which is introduced as a scaling parameter. 

In connclusion, the following expression holds for the matrix elements of the 
operator qJ., where Jdiffers from J' by the state of the a single bond (note that with 
our hypotheses the symmetrized transition operator is independent of the orientation) 

where pl is the unique negative eigenvalue of the matrix M,, obtained by scaling the 
inverse of the product D,V',Z' [5 ] .  The diffusion matrix is given by D, = kTt ; ' ,  where 
the friction matrix (, is calculated at  each saddle point by hydrodynamical methods 
[18], on the basis of the chain geometry. The factor c appearing in equation (39) is 
introduced to account for the possibility of different torsional barriers for the aromatic 
aliphatic bond. Therefore, for rotations around methylene-methylene bonds we have 
c = 1, while c is a free parameter for transitions involving the first chain bond. In 
particular, if the four site model is used, there may be two values, cI and c2, relative 
to jumps between sites on the same side, or on opposite sides of the aromatic plane. 
It can be noticed that, in each of the models suggested for the Co-Cl bond, all the 
potential minima are assumed to be equivalent; it follows that the exponential term 
in equation (39) reduces to unity for all the transitions about that chain bond. 

In the procedure just sketched a model which is adequate for methylene- 
methylene bonds has been extended to the aromatic-aliphatic bond. Actually, since 
we do not know the profile of the potential around this bond, we cannot say if such 
stable states exist, which geometries they correspond to, and whether the dynamics is 
correctly described in terms of jumps between them. Therefore, instead of looking for 
any physical meaning, we rather think of the different choices as simple ways to 
introduce some kind of motion around the first bond, according to physical intuition 
and experimental data. In an alternative procedure, which may make clearer the 
phenomenological nature of our description of the dynamics of the first bond, the 
master equation procedure, leading to equation (39), is used only for the aliphatic 
bonds, w!ile for transitions involving the first bond the matrix elements of the 
operator qJ., are given simply by 

(4Ll (Q)I*JJ,(R)I~L,(Q)) = - J , , . / , ~ ~ , . ~ ~ C ' W ,  (40) 

where again the factor c' may have different values, for trannsitions across and on the 
ring plane, in the four site model. The diagonal operator WJJ is calculated according 
to equation ( 1  l), and its matrix representation is given as 

(41) 
I t  has to be noticed that, since the operator depends on the Euler angles R, each 
matrix element requires several lengthy integrations. 
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Theory of molecular motions in flexible nematogens 603 

3.2. Uncoupled model 
In the uncoupling approximation the problem is factorized for the internal and the 

overall variables. If V'"" is assumed to depend only on the Euler angle p, the 
equilibrium averages of the Wigner functions 9iIo(Q,) are given by 

where 

and 

(43) 

the coefficient Q, being the fractional population of the J th  configuration, defined as 

Qj = exp { - V'"'/kT}/ x e x p  { - V;"' /kT} .  
I 

With the further hypothesis that the overall motion can be described as axially 
symmetric diffusion, the autocorrelation function of the Wigner component 9ifi((n') 
can be written as 

where gb(t) and Cnlp(t) are the correlation functions for the deviations of 9A(Qmol ,F , )  
and 9,$((n) from their equilibrium values. The spectral densities j : ' (w)  for the internal 
functions L2$(!2mol,F,) are calculated from expressions analogous to equation ( 3 9 ,  
where the matrix a + W has to be replaced by the jump matrix W, and the elements 
of the vector 6dt' represent the deviations of the functions 9$(QLo],F,), calculated in 
the J th  configurations, from their average value, 

Following standard procedures, the Fourier-Laplace transform of the correlation 
function C,,,(t) could be calculated by expanding the diffusion operator k(Q) in an 
orthonormal basis. Actually, i t  can be shown [I91 that the correlation functions are 

~~ 

well approximated by single exponentials 

C",(t) 5z anrpexP(-b",)? 

anlp = [6d:lp(P)1z 

where 

and 
- 1  bmp = T"'p + (D,, - Dl. )P2. 

6d&(S) = d,&(B) - d&(8), 

In these expressions the function 6d&(/?) is defined as 

and the frequency ti; is the expectation value for such a 
diffusion operator acting only on the p angle. If use of 

(46) 

(47) 

function of a reduced 
the mono-exponential 
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604 A. Ferrarini el al. 

approximation is made, the spectral density YJw) can be decomposed as 

(49) 
Note that for the ring bond the expressions for the average values and the spectral 
densities become 

2 Q L . '  + h m , o g m (  ) J&(W - ibm). 

g t $ ( Q R )  = b m . O g h ( f i ) d & ( f l m o L R )  (50) 

and 

respectively. 

4. Numerical results 
The calculations with the coupled model are performed in a basis of Nc = N N ,  

elements, where N is the number of localized functions and ND the number of 
modified Wigner functions 4Lk (Q) necessary to ensure convergence of the spectral 
densities. From equations (37) and (38) it appears that the spectral density Yn, can be 
calculated in a basis spanned by the functions g,(a, iI)4kk(Q). The truncation is 
performed on the index I ;  in each calculation all of the functions 4Lk with 
I = 0 + I"" and k = -1, . . . , 1 are retained. It follows that, for a given value of 

In typical calculations N x 100, I""" = 5, hence N ,  = 35 
and N ,  x 3500. 

Given the cumbersome expressions for the matrix elements and the dimensions of 
the basis, the computations are very lengthy. Only by using efficient routines and 
strategies was it  possible to perform them on a pVAX computer. A significant 
improvement was achieved by transforming, for each configuration, to a frame 
diagonalizing the interaction tensor. This transformation made it possible to obtain 
the matrix elements in terms of modified Bessel functions, and to avoid the calculation 
of multiple integrals. In any event the CPU time required for a typical calculation is 
of the order of some days. Explicit expressions for the matrix elements are given in 
the Appendix. 

In contrast, the calculations based on the uncoupling approximation are very 
fast: the computation of the spectral densities for a given set of parameters can 
be performed in a time of the order of few minutes on a pVAX computer. In 
fact, since the coefficients of the single exponential approximation for rotational 
correlation functions can be tabulated as functions of the mean field strength, q', only 
the internal spectral densities have to be calculated, and for a chain with four degrees 
of freedom this can be very efficiently accomplished, according to a procedure 
presented elsewhere [5]. 

All spectral densities were calculated with the Lanczos algorithm [20], whose 
efficiency was essential to perform the coupled model computations. Concluding, the 
calculations are performed in terms of the energy parameters vg, vp, E ,  q and p,  and 
the dynamic parameters D,,, D, w,  c. The former set of data, as well as the chain 
geometry, are taken from a paper of Emsley et al. [16]: vg = 1, vp = 4,6, = 112.5", 
H e H  = 106.3". For the mean field parameters q and E ,  values were taken from the 

+ lmm, N - ( I m m  
D -  
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Theory of molecular motions in jiexible nematogens 605 

same paper, i.e. g = 2 and E = 0.6, have been used in most calculations. In some 
cases the values of g and E have been changed, corresponding to different degrees of 
orientational order of the mesophase, but the ratio g / s  has been kept constant [21]. 
In comparing results obtained with the coupled and the uncoupled model, the same 
value of the segmental interaction strength E has been used, while the overall inter- 
action strength g' was chosen in such a way to obtain comparable chain order 
parameters. The ratio of the potential curvatures p,  which is related to the cooperativity 
of the internal motions [5], has generally been taken equal to unity. However, in some 
cases the value 0.25, derived from the Ryckaert and Bellemans parameterization of 
the butane torsional potential [22], has been adopted. Actually, for short chains the 
two choices produce only minor differences in the final results. The frequency w is 
introduced as a scaling parameter, while the factors c, c ,  and c2 (or the factors 
c', c; and c;) and the principal values of the overall diffusion tensor are free para- 
meters. The shape of the molecule suggests that reasonable values of the ratio Dll/D, 
should be in the range from 5 to 10, but even larger ratios have been used in some 
cases. 

4. I .  Static properties 
Table 1 gives the average values l!3~,,,(QF,)l and I69,$(Q,)l2. All the cases presented 

for the potential and geometry of the aromatic-aliphatic bond are considered, with 
the two different choices of ti = 60", case 3', and E = 45", case 3". As a consequence 
of the axial symmetry of the mean field acting on the core, only the averages values 
of properties related to the ring C,-H bonds are affected by the various choices, and 
it can be seen that the differences are small. 

Table 1 .  Average values of Wigner functions calculated with up = 1.0, v,, = 4.0, = 2.0, 
E = 0.6. The calculations refer to the following choices for the Co-CI bond. ', no motion 
about the bond; *, two sites; ", four sites, cl = 60"; '-, four sites, cl = 45". 

R' 
R2 

R'- 
R" 

1 
2 
3 
4 

- 0.09 1 
- 0.09 1 
- 0.08 I 
- 0.07 1 
- 0.229 
-0.165 
-0.164 
-0.120 

0.124 
0.125 
0.131 
0. I38 
0.101 
0.150 
0.150 
0.180 

0.210 
0.210 
0.210 
0.2 10 
0.156 
0.160 
0. I60 
0.162 

0.2 19 
0.219 
0.2 16 
0,214 
0.267 
0.250 
0.250 
0.238 

In table 2 the principal values S,.,., S,,,v, and S+ of the molecular and the segmental 
ordering matrices are shown. The ordering matrix S""' is diagonal in the molecular 
frame, apart from the case of a rigid C,-C, bond, when the principal axes are obtained 
by a 4 rotation about the x axis. The principal axes of the local ordering matrices are 
obtained from the frames M, by rotations of amplitude 4 around the y axis (for 
symmetry reasons, S ,  and SV2 turn out to be zero). At all positions the ordering tensor 
is found to be approximately axially symmetric, the asymmetry decreasing towards 
the free end of the chain. A different behaviour at the even and odd positions is 
apparent: in the former case the alignment axis roughly coincides with the z axis, while 
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606 A. Ferrarini et al. 

Table 2. Principal elements of the molecular and local ordering matrices, calculated with the 
parameters wg = 1.0, v,, = 4.0, 4 = 2.0 and E = 0.6, and the same choices as in 
table 1 for the Cn-CI bond. The principal axes are obtained by a 4 rotation about the 
x molecular axis and about the y axes of the M i  frames, respectively. 

moll 
moI' 
moly 
moi3' 

1 
2 
3 
4 

- 0.268 
-0.312 
- 0.299 
- 0.286 

0.580 
-0.212 

0.438 
-0.176 

-0.312 
- 0.260 
- 0.273 
- 0.286 
-0.312 
- 0.226 
- 0.223 
- 0.164 

0.580 
0.572 
0.572 
0.572 

- 0.268 
0.438 

0.334 
-0.215 

- 6" 
0" 
0" 
0" 

28" 
- 4.5" 
26.5" 
0" 

in the latter it lies closer to the local x axis. Again, only slightly different results are 
obtained for the molecular ordering matrix in correspondence of the different models 
for the potential around the C,-C, bond. 

It is interesting to compare these results with those obtained with the assumption 
of uncoupled overall and internal degrees of freedom, with q' = 2.67 (see tables 3 
and 4). The average values are calculated according to equations (42) and (49 ,  since 
-F, I69&,(Q )I2 = Gh(0). The larger discrepancies are observed in the order parameters 
9&(nF,) for the chain C-H bonds, which in the uncoupled computations are smaller 
( ~ 2 0  per cent) and decrease a little faster along the chain. In contrast with 
the coupled case, the deviations from axial symmetry of the ordering tensors, 
which are negligible at the first position, become larger moving away from the 
aromatic core. Obviously, the average values for the ring C,-H bonds now 
depend only upon the potential acting on the core; it can be observed that the 
results are very close to those observed in case 3", with four sites symmetrically 
distributed. 

Table 3. Average values of Wigner functions calculated for the uncoupled model with 
vg = 1.0, v,, = 4.0, q' = 2.67 and E = 0.6. 

%I ( a ,  ) (nF, ) I 2  169:fl(nF,)12 169;fl(RF,)12 

R - 0.070 0.145 0.210 0.215 
1 -0.185 0,113 0.173 0.253 
2 -0.130 0.156 0.175 0.239 
3 - 0.1 30 0.156 0. I75 0.239 
4 - 0.090 0.182 0.177 0.228 

Table 4. The principal elements of  the local ordering matrices calculated for the uncoupled 
model with the parameters vK = 1.0, v,, = 4.0, q' = 2.67 and E = 0.6. 

S T Y  s, S?, S:.:. 4 
R - 0.279 - 0.279 0.557 0" 
1 0.557 - 0.279 - 0.279 22.5" 
2 - 0.243 -0.195 0.438 I "  
3 0.437 -0.193 - 0.245 21" 
4 -0.219 -0.135 0.354 - 3" 
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Theory of molecular motions in flexible nematogens 607 

4.2. Spectral densities 
In view of the number of free parameters entering the calculations, the analysis 

of dynamical properties of the system is much more complex than that for the 
equilibrium quantities. First, we investigate the effect of the profile of the potential 
around the aromatic-aliphatic bond. Table 5 shows the zero frequency spectral 
densities jl (0) and ,f2(0) calculated with the models already denoted by 1, 2, 3' and 
3", with c = 1, D,, = 0.1 W and D, = 0.01 w.  The data in the fifth block refer to a case, 
denoted 3"', which differs from 3' only in the values cI = 1 and c2 = 0.01. In all cases 
we observe a typical decrease of the spectral densities along the alkyl chain, which is 
a consequence of the superimposed rotations at the C-C bonds, and is in general 
agreement with the results of NMR relaxation experiments [ I ,  231. 

Table 5. Zero-frequency spectral densities, in w-I units, calculated with vg = 1.0, v,, = 4.0, 
9 = 2.0, E = 0.6, p = 1, D,, = O.lw, D, = 0.01~.  The calculations refer to the 
following choices for the Co-C, bond: ( I )  no motion about the bond; (2) two sites, c = 1; 
(3') four sites, i = 60", c = 1; (3") four sites, ii = 45O, c = 1; (3"') four sites, ii = 60°, 
CI = 1,  c2 = 0.01. 

R 1 2 3 4 

1.53 
0.75 

1.53 
0.74 

1.51 
0.70 

1.49 
0.69 

1.51 
0.72 

1 .oo 
0.80 

0.47 
0.69 

0.42 
0.46 

0.40 
0.33 

0.82 
0.57 

0.61 
0.52 

0.28 
0.47 

0.24 
0.28 

0.23 
0.22 

0.50 
0.36 

0.2 1 
0.20 

0.15 
0.19 

0.14 
0.15 

0.14 
0.13 

0.19 
0.17 

0.096 
0.100 

0.064 
0.095 

0.060 
0.076 

0.059 
0.069 

0.085 
0.085 

In contrast with the behaviour seen for static properties, the choices for the first 
bond now appear to have a pronounced effect. In the absence of motion around the 
aromatic-aliphatic bond the spectral densities decrease rather regularly along the 
chain. The introduction of jumps between the two positions at f 90", for geometrical 
reasons has only a slight effect on A, while it  produces a noticeable decrease in YI at 
any position. If a four fold potential is assumed, as in cases 3' and 3", both Yl and 
y2 decrease with respect to case 1.  Only small differences are observed for the two 
geometries, apart from y2 being a little smaller for Or = 45". In order to make yl larger 
than f 2 ,  as observed experimentally, two different rates for the jumps around the first 
bond have to be introduced, as for case 3"'. In general, we see that the introduction 
of motion about the first chain bond reduces the ratio y;I/,f?, the effect being 
stronger the faster such motion is. 

Looking in more detail at the behaviour of the ring C,-H bonds, we see that for 
a rigid molecule in a mean field potential with q' = 2.67, we would have yl = 1.5O/w 
and ,f2 = 0.72/w. In the presence of internal reorientations there is, also for the 
aromatic cores, a new relaxation mechanism, due to the fact that the molecule probes 
different potentials, according to its configurations, and the diffusion tensor is not 
constant in time. As we show later the relevance of such an effect depends on the ratio 
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608 A. Ferrarini el al. 

of the rates for the internal and the overall motions; in particular it becomes larger 
as this ratio increases. 

In order to illustrates the effect of the overall reorientation rates, in table 6 we 
show the spectral densities calculated for case 3” with a constant ratio D,, /D,  = 10 
and D, = 0.001 w, 0.01 and 0.1 w. For slow molecular diffusion, the spectral densities 
show a strong dependence on the specific geometric and dynamic features of each 
chain segment. In particular, there may be large differences among the results 
obtained with the various models for the aromatic-aliphatic bond. Faster overall 
motions wash out, at least in part, the model and site dependence; the spectral 
densities become smaller and decay more smoothly along the chain. 

Table 6. Zero-frequency spectral densities, in w-  I units, calculated with the parameters 
vg = 1.0, vp = 4.0, q = 2.0, E = 0.6, p = 1 and different values of the diffusion tensor. 
(i) D,, = 0.01~1,  D, = 0 . 0 0 1 ~ ;  (ii) D,, = O.lw,  D, = 0.01~;  (iii) D,, = w, 6, = 0 . 1 ~ .  

R 1 2 3 4 

A (0) (1) 13.4 2.35 0.61 0.39 0.10 x (0) 6.56 2.38 1.18 0.44 0.18 

A (0)  (4 1.51 0.42 0.24 0.14 0.060 
A (0) 0.70 0.46 0.28 0.15 0.076 

A (0) 6 4  0.156 0.082 0.08 1 0.055 0.033 
A (0) 0.073 0.07 1 0.066 0.050 0.034 

It is interesting to compare this behaviour with the results obtained with the 
uncoupled model, shown in table 7. A general rule is that f 2  is rather well approximated, 
while y, may be largely overestimated. This can be understood if we look in more 
detail at the terms appearing in the expressions for f ,  and f 2 .  Average values and rate 
constants are shown in tables 8, 9 and 10. A careful analysis of the magnitude of the 
various terms appearing in equation (49) reveals that the main contribution from the 
overall dynamics is the modulation of the term 9&(QF,), which has a large effect only 
upon 9,. The weight of such a term becomes larger as the overall motion becomes 
slower with respect to the conformational jump rate. (This is further evidence of the 
already mentioned fact that the chain characteristics become more relevant the lower 
the molecular diffusion is.) Such considerations also hold for the coupled calculations; 
but in that case the part of a Wigner function which is not directly averaged to zero 

Table 7. Zero-frequency spectral densities, in w - ’  units, calculated for the decoupled model 
with vg = 1 .O, v,, = 4.0, q’ = 2.67, E = 0.6, p = 1 and different values of the diffusion 
tensor (i)  D,, = O.OIw, D ,  = 0.001~;  (ii) D, = O.lw, D, = 0 . 0 1 ~ ;  (iii) D,, = w ,  
D, = 0 . l w .  

R 

15.0 
7.20 

1.50 
0.72 

0. I50 
0.072 

1 2 3 

3.6 1 1.93 1.61 
2.19 1.36 0.54 

0.52 0.35 0.24 
0.37 0.27 0.14 

0.096 0.089 0.063 
0.066 0.060 0.045 

4 

0.79 
0.28 

0.13 
0.082 

0.040 
0.033 
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Table 9. Decay rates k, of the internal correlation functions 92(!.2mol,Fi)r calculated with 
wt = 1.0, wp = 4.0, E = 0.6, p = 1. The data are expressed in w units. The calculations 
refer to the following choices for the Co-CI bond: (1) no motion about the bond; (2) two 
sites, c = 1; (3') four sites, ti = 60°, c = 1; (3") four sites, ti = 45", c = I .  

ko 

4 

3 
4 

(3') 1 
2 
3 
4 

(3") 1 
2 
3 
4 

0.500 
0.690 
2.619 

- 
0.945 
1.412 
5.472 

- 
0.565 
0.847 
3.277 
- 

0.565 
0.847 
3.277 

0.538 
0.903 
1.402 

0.466 
0.628 
2.051 
3.020 

0.453 
0.608 
1.597 
2.314 

0.453 
0.608 
1.597 
2.314 

0.533 
0.906 
1.482 

- 
1.008 
2.825 
4.790 

0.863 
1.066 
2.090 
3.278 

0.863 
1.157 
2.247 
3.428 

Table 10. Pre-exponential and exponential terms used in the single exponential 
approximation of the external correlation functions, calculated for r j  = 2.67. 

m 

1 0.209 0.077 0.287 0.023 0.109 0.089 
2 0.058 0.104 0.109 0.089 0.362 0.045 

by the internal rotations is effectively modulated by the changes of the mean field 
potential induced by the conformational transitions (see the same effect on the ring 
C,-H bonds). This is why the f1 values obtained are always overestimated in the 
uncoupled calculations. On the other hand, the contribution of such residual inter- 
actions, modulated by the overall diffusion, is generally small for the spectral densities 
j2, so they can be better approximated by the uncoupled model. The discrepancies 
can be attributed essentially to the different averages calculated with the two 
approaches. 

In all of the calculations based on the coupled model the principal axis system of 
the diffusion tensor D" has been assumed to change with the configuration, as 
explained previously. This choice does not seem to affect the results significantly, as 
shown by table 11, which gives the zero frequency spectral densities calculated with 

Table 1 I .  Zero-frequency spectral densities, in w - I  units, calculated with the parameters 
vg = 1.0, v,, = 4.0, 9 = 2.0, E = 0.6, p = 1, D,, = O.lw, D, = O.OIw, four sites with 
h = 60°, c = 1 and a configuration independent overall diffusion tensor. 

R 1 2 3 4 

Yl(0) 1.52 0.42 0.24 0.14 0.060 
A (0) 0.74 0.44 0.29 0.15 0.077 
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Table 12. Average values and spectral densities, in w - '  units, calculated with the 
parameters v, = 1.0, v,, = 4.0, = 1.15, E = 0.35, p = I ,  D,, = O . l w ,  D ,  = 0 . 0 1 ~  
and for the Co-C, bond four sites ii = 60°, c = 1. With this choice the elements of the 
molecular ordering matrix are: S,,  = -0.190, S , ,  = -0.163 and Sr, = 0.352. 

R 1 2 3 4 

- 0.054 -0.145 - 0.097 - 0.096 - 0.066 

lwl(nF,)12 0.167 0.146 0.174 0.174 0. I89 

169:O(nF,)12 0.201 0.175 0.179 0.180 0.182 

% (0, ) 

16-@O(nF,)l2 0.213 0.242 0.229 0.228 0.220 

A (0) 1.23 0.59 0.29 0.17 0.064 
A (0) 0.85 0.50 0.29 0.16 0.068 

Table 13. Average values and spectral densities, in w - '  units, calculated for the uncoupled 
modelwithv, = I.O,v,, = 4 . 0 , ~  = 1 . 5 , ~  = 0 . 3 5 , ~  = I,D,, = O.lw,D,  = O.OIw,and 
for the Co-C, bond four sites CC = 60°, c = I .  With this choice the elements of the 
molecular ordering matrix are: S,,  = - 0.167, S , ,  = -0.167 and S,, = 0.334. 

R 1 2 3 4 

- 0.043 -0.111 - 0.062 - 0.06 I - 0.033 

lb%il ( Q ,  ) I 2  0.178 0.128 0.151 0.159 0.160 

169iO(nF, )I2 0.201 0. I84 0.188 0.188 0. I90 

%I (OF, ) 

16~;o(Q,,)IZ 0.210 0.232 0.218 0.2 I9 0.21 1 

%I (0)  1.21 0.64 0.35 0.24 0.095 

92 (0)  0.84 0.45 0.28 0.16 0.080 

the same parameters used for case 3' and listed in table 5,  but a configuration 
independent principal axis system for the diffusion tensor. We should remember, 
however, that even in this case the motion occurs in a completely asymmetric 
configuration dependent mean field. 

Finally, we can look at the effect of the mean field strength. In order to illustrate 
this point, tables 12 and 13 give average values and zero frequency spectral densities 
calculated with the coupled and the uncoupled model, respectively. The data refer to 
case 3', with r] = 1.15 and E = 0.35 (the ratio r ] / ~  has the same values as in the 
previous calculations). In the uncoupled calculations r]' = 1.5 has been used, which 
gives an order parameter Sr, = 0.334. From a comparison with the analogous results 
at a higher orienting potential we infer that, according to physical intuition, the error 
introduced in the calculation of the order parameters @,(Q,) by the uncoupling 
approximation tends to zero as the field strength goes to infinity. The opposite seems 
to be true for the spectral densities, due to the fact that the relaxation mechanism 
related to the time dependent mean field becomes more effective as the mean field 
strength increases. For the same reason, the spectral densities show a tendency to 
become larger the weaker the external field is, the limiting value being taken in an 
isotropic phase ( E  = 0, r] = 0), as illustrated by table 14. Notice that in this case 
internal and overall variables are actually decoupled. 
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612 A. Ferrarini et af. 

Table 14. Spectral densities, in w - '  units, calculated with the parameters vg = 1.0, vp = 4.0, 
q = 0, E = 0, p = I ,  D,, = O.lw,  D, = 0 . 0 1 ~  and for the Co-C, bond four sites 
5 = 60°, c = 1. In this case the spectral density 8" is independent of the index M.  

R 1 2 3 4 

3" (0) I .oo 0.65 0.30 0.18 0.064 

5. Comparison with experiments 
Information about the dynamics of the various bonds in the 5CB molecule can be 

derived from NMR relaxation measurements for deuterons in fully deuteriated 
molecules. Experimental values of the spectral densities $71 and j2 in the nematic 
phase, at 303.5K, at two different Larmor frequencies, wD = 12.0MHz and 
wD = 30.7 MHz, have been reported by Counsel1 et af. [l]. The spectral densities, in 
picoseconds, together with the order parameters 9&,(QF,), are shown in table 15. They 
are related to the experimental data appearing in [I], that is the quadrupolar splittings 
ACi and the measured spectral densities J:, by 

and 

where qcD is the quadrupolar coupling constant, (e2Qq/h), which has been taken equal 
t o  168 kHz and 185 kHz, for the alkyl and the aromatic deuterons respectively, and 
the deuterium order parameters are indicated as SAD, according to the usual notation. 

Table 15. Experimental order parameters, spectral densities, and relaxation times, for 
deuterium in 5CB-dlS at 303.5 K, derived from [ I ] .  Last line: relaxation times for an 
isotropic phase extrapolated (see text) from (231. 

R I 2 3 4 
~~ 

- 0.038 -0.185 -0'123 -0.133 - 0.089 %(%,) 
2' ( 12.0 MHz)/ps 85 79 44 41 18 

$I (30.7 MHz)/ps 79 54 35 29 15 

j2(24.0 MHz)/ps 58 40 19 12 9 

f2(61.4 MHz)/ps 54 30 15 I 1  7 
W(30.7 MHz)/ps 295 174 Average (2,3,4) = 70 

W(30.7 MHz)""/ps 280 310 Average (2,3,4) = 120 

The experimental spectral densities show a continuous decreasing from the 
aromatic core towards the free end of the chain, the ratio $7:'/32 being about four. 
At all chain positions yl is roughly twice as large as f 2 ,  while for the C,-D bonds 
the ratio yl/$72 is about 1.5. Some frequency dependence is observed, weaker for the 
ring bonds. 

For the same system, relaxation times B(w,) = fl (wD) + 4j2(2wD) have been 
measured, at o,, = 30.7 MHz, over a wide temperature range, going from the isotropic 
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to nematic phases [23]. In the isotropic phase the relaxation rates for the CR-D and 
the C,  -D bonds have approximately the same value, but a discontinuity is observed 
for the C,-R bond at the N-I phase transition. Analogous observations cannot be 
performed for the other chain bonds, because their lines are not resolved in the 
isotropic phase. Anyway, a discontinuity is also observed between the relaxation rate 
corresponding to the three different C-D bonds in the isotropic phase and the average 
of the three relaxation rates measured in the nematic phase. The last two rows of table 
15 give the 93 values calculated from the spectral densities reported in [l], at a Larmor 
frequency of 30.7 MHz, and those derived from [23], by extrapolating the data for the 
isotropic phase to 303.5K. Again, the data have been scaled with respect to the 
quadrupolar coupling constant. 

Table 16 shows the order parameters, zero frequency spectral densities and 
relaxation times calculated by excluding any motion about the Co-C, bond. It has 
been assumed vn = I ,  vp = 4, and 9 = 1.5; with these values the order parameters 
9&(QF,) are reproduced rather well. The only significant differences are observed for 
the order parameters of the ring CR-D bonds, which depend strongly upon the profile 
of the potential about the C,-C, bond. Moreover, the quadrupolar splittings of the 
ring deuterons are near to zero for geometrical reasons, and are affected by a large 
relative error. More detailed choices would be possible for the description of the mean 
field [21], but they would have minor effects on the spectral densities. Since in the 
present case our aim is a general understanding of the dynamical behaviour of the 
system, rather than a detailed fitting of the experimental results, we have taken the 
simplest model, requiring the minimum number of parameters. 

Table 16. Order parameters, zero-frequency spectral densities and relaxation times calculated 
with TJ~ = 1.0, v p  = 4.0, 9 = 1.5, E = 0.45, p = 1. With these parameters the S;; 
element of the molecular ordering matrix is 0.457. The elementary frequency w is given 
the value4 x 109s-', and D,, = 2 x 109s-', D, = 4 x lo's-'. A rigid C,-C, bond is 
assumed. Last line: relaxation times calculated with the same parameters, but 9 = 0 and 
& = 0. 

R 1 2 3 4 

- 0.077 -0.183 -0.125 -0.124 - 0.087 % ( Q ,  1 
A (O)/PS 86 134 71 41 16 
22 (O)/PS 62 76 49 30 14 

9(30.7 MHz)/ps 306 33 1 Average (2,3,4) = 155 

B(30.7 M Hz)'"/Ps 323 356 Average (2,3,4) = 175 

The dynamical quantities have been obtained by assuming a value of 4 x lo9 s - l  

for the scaling frequency w ,  which seems to be reasonable, if we recall that 
w z 10'os-l for butane in the liquid phase [24]. In view of the general Considerations 
just presented, we see that, in order to reproduce the experimental decay of the 
spectral densities along the chain, reorientations of the whole molecule and con- 
formational changes must have comparable timescales. On the other hand, within the 
present model, the frequency dependence implies an overall motion rate of the same 
order of magnitude of the Larmor frequency. The reported results have been obtained 
by assuming D,, = 0 . 5 ~  and D ,  = 0 .01~ .  This high ratio of the two components of 
the diffusion tensor, which cannot be justified on the basis of the shape of the 
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614 A. Ferrarini et al. 

molecule, indicates that there must be some process, not accounted for by the 
theoretical model, whose effect can be mimicked by a rotation about the molecular 
para axis. It is easy to identify such a process as the motion about the Co-C, bond. 

In general, we see that the experimental data for the ring deuterons are roughly 
reproduced by the present model. Larger discrepancies are observed if we look at  the 
chain bonds: the spectral densities for the deuterons attached to C, and C ,  are 
overestimated, and the ratio y,/y2 comes out to be too large at  all positions. It is 
apparent that the motion around the Co-C, bond, which would especially affect the 
first chain bonds, cannot be neglected. The results shown in table 17 have been 
obtained by assuming a four site jump model for the aromatic-aliphatic bond, with 
CC = 45", D,, = 0 . l ~  and D, = 0 . 0 1 ~ .  Energetic parameters and scaling frequency 
have the same values used in table 16. The rotation around the C,-C, bond has been 
described according to equation (40), with c; = 10 and c; = 0.1. By setting 
w = 4 x 109s-', D, is found to have a value of 4 x lO7s-', very similar to that 
obtained from "C spin-lattice relaxation measurements [25] in the same molecular 
system, that is 2.9 x 107s-' at 331 K. Extrapolation to 303.5K of dielectric relaxation 
data for 5CB in the isotropic phase [26] gives a value of lo's-'. In the present 
calculation such a choice would lower the spectral densities and reduce their frequency 
dependence, in contrast with the experimental data. 

From table 17 we see that the experimental trend is reproduced, apart from the 
ring CR-D bond, whose spectral densities are largely overestimated. This can be 
attributed to the inadequacy of our model in describing the ring dynamics. In fact, 
given the comparable dimensions of the rigid core and the aliphatic chain, it is 
incorrect to neglect the recoil rotations of the molecule, in particular those deriving 
from motions around the first chain bond. Such recoil rotations act as another 
relaxation mechanism for the ring C,-D bonds, with a frequency of the same order 
of magnitude of the rate constants for the conformational jumps about the aromatic- 
aliphatic bond. The resulting effect should be a noticeable reduction of the spectral 
densities f ,  and y2. The role of the recoil rotations is confirmed by the experimental 
observation that in the isotropic phase, where the interpretation of the results is not 
complicated by the effect of the ordering, the relaxation rates for the C,-D and the 
C,-D bonds have approximately the same value. In addition, the relaxation of the 
ring deuterons might be affected by 180" ring flips, even though steric interactions and 
n-electron conjugation are expected to oppose rotations about the ring-ring bond. 

Table 17. Order parameters, zero-frequency spectral densities and relaxation times, 
calculated with 1-'g = 1.0, v,, = 4.0, q = 1.5, E = 0.45, p = 0.25. With these parameters 
the S,: element of the molecular ordering matrix is 0.451. The elementary frequency w is 
given the value 4 x 109s-', and D,, = 4 x lo's-', D, = 4 x 107s-'. For the C,-C, 
bond four site jumps are assumed, with = 45", c; = 10, c; = 0.1. Last line: relaxation 
times calculated with the same parameters, but 1 = 0 and E = 0. 

R 1 2 3 4 

- 0.056 -0.183 -0.125 -0.124 - 0.087 %%,) 
A (O)/PS 327 100 59 39 16 

A (O)/PS I88 49 34 22 10 

B(30.7 MHz)/ps 910 207 Average (2,3,4) = 1 16 

B(30.7 MHz)'"/Ps 949 26 1 Average (2,3,4) = 167 
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Frequency dependence of the spectral densities jl (solid line) and (dashed line) for the 
bonds C ,  -D and C,-D. They are calculated with the following set of parameters: vg = I ,  
vP = 4, E = 0.45, 9 = 1.5, p = 0.25, cl = 45O, c; = 10, c; = 0.1, D,, = 0 . l ~  and 
D, = 0 .01~ .  The spectral densities are in w - I  units, and w is in w units. 

The figure shows plots of the spectral densities 2, (solid line) and 3, (dashed line) 
as functions of the frequency, for the C,  -D and C,-D bonds. The frequency w and 
the spectral densities are expressed in w and w -  I units respectively. The frequency 
dependence for the C,-D bond is very similar to that for C,-D, while the last 
methylene bond shows only a slight dispersion. Analogous behaviour is obtained with 
the data used in table 16. In general, we can say that in the range including the 
experimental Larmor frequencies there is a certain dispersion, more pronounced for 
the spectral densities which have a relevant contribution of the term 9&(Rmo,,F,), since 
the frequency dependence comes essentially from the modulation of such a term by 
slow molecular tumbling. Certainly, a better agreement with the experimental results 
would require a more detailed knowledge of the potential around the first chain bond; 
this would allow an improvement of the dynamical model for the rotations about that 
bond and a more sensible choice of the parameters. For instance, the experimental 
behaviour could be equally well explained by assuming a somewhat higher value 
of the diffusion parameter D,, if smaller values were chosen for the constants 
characterizing the dynamics around the C,-C, bond. 
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616 A. Ferrarini el al. 

The interpretation of the basic experimental results for the chain deuterons seems, 
however, to require a four site model, with two different rates for jumps across and 
above the ring plane, even though there is no physical reason with which to justify 
such a choice. Actually, the same conclusion is derived from the analysis of proton 
NMR spectra of 3,5-dibromoethylbenzene dissolved in a liquid crystal solvent [27]. 
The fitting of the experimental data suggests the presence of two pairs of minima, 
above and under the ring plane, separated by barriers of different heights, for the 
rotational potential of the ethyl group about the C,-C, bond. In contrast, MO 
ab initio calculations find two minima, corresponding to the CH,-CH, bond perpen- 
dicular to the phenyl plane [28]. Such a result is not necessarily in contradiction with 
our four site model, because the latter could be viewed as a rough way to mimic 
dynamics consisting of fast librations inside two large potential wells, on either side 
of the ring, competing with less probable jumps from one minimum to the other. 
However, we have to be very careful in giving a physical meaning to the dynamical 
model for the first chain bond, since the inclusion of the frictional couplings between 
overall and internal variables might change the picture of the system radically. 

Finally, some interesting observations can be derived by comparing the exper- 
imental results for the nematic and the isotropic phase. In the latter case the two 
components $, and f 2  cannot be obtained separately, and only experimental values 
of the relaxation times W = 4f, + f 2  are available. The last row of tables 16 and 17 
shows the W values calculated for the various chain positions at a Larmor frequency 
of 30.7 MHz with the set of parameters used for the nematic phase, but q = 0 and 
E = 0, to eliminate the effect of the mean field. Comparing with the relaxation rates 
relative to the nematic phase, we see a discontinuity for all the chain C,-D bonds. This 
behaviour, which agrees with the experimental observations [23], can be explained as 
an effect of the ordering, which reduces the corresponding spectral densities, as 
noticed in our previous general considerations. Again, this is a minor effect for the 
CR-D bonds, characterized by a geometry near to the magic angle. Actually, the 
phase transition is accompanied by a series of modifications of the system, such as an 
increase of the viscosity, changes in the anisotropy of the diffusion tensors, and the 
possibility of collective motions. However, the outcome of the ordering appears 
from our calculations to be the main cause of the discontinuity in the temperature 
dependence of the relaxation rates at the phase transition. 

6. Concluding remarks 
In the present work, the motion of a flexible molecule in a nematic phase is treated 

by a model in which the conformational transition of the alkyl chain are super- 
imposed on the rotational diffusion of the whole molecule. The conformational 
isomers are defined according to the RIS approximation, while the anisotropic 
interactions with the environment are described by a mean field potential, which is 
taken as a sum of contributions, each acting on a rigid unit. All of the quantities in 
the theory are well defined at a molecular level, so that no free parameters enter the 
calculations, provided that detailed information about the energetics of the system is 
available. Energetic and hydrodynamic couplings among the internal degrees of 
freedom, and the coupling of internal and overall variables, exerted by the orienting 
potential, are taken into account by the dynamical model. 

We have analysed in detail the effects of the strength of the mean field potential 
upon both static and dynamic properties, and those related to the different timescales 
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of internal and overall motions. In order to clarify any aspect of the dynamical 
problem, the role of the diffusion tensor D" has been discussed, by considering various 
values of the diffusion tensor components and different choices of the diffusion 
principal axes. The calculated properties are compared with those obtained with the 
assumption of decoupled internal and overall motions, which is usually made even in 
the most sophisticated treatments of flexible molecules in anisotropic environments 
[7,29]. This is a major point of our model, and it deserves some more comments. 

The coupling between reorientational and internal motions results from the 
presence of the mean field potential, which makes the configurational energies orien- 
tation dependent. The full coupled model requires rather heavy computational 
procedures, and i t  would obviously be preferable to avoid them if they are not really 
needed. We should realize however that if internal and overall motions are assumed 
to be decoupled, the errors introduced are relatively small only if the tumbling rate 
of the molecular axis is of the same order of magnitude of the conformational 
transition frequency. Since in actual systems the tumbling motions may be significantly 
slower than the isomerization processes, the spectral densities can be overestimated, 
especially for the positions nearest the free end of the chain. In fact, under the 
assumption of uncoupled motions any specific tensorial quantity is averaged to a 
non-zero value by conformational jumps, and the residual interaction is modulated 
by the overall diffusion. If this motion is slow enough, such a process may provide the 
dominant contribution to the spectral densities at NMR frequencies. On the other 
hand, the coupled model takes into account the changes of the ordering matrix 
induced by the internal motions, and this effect gives rise to an efficient relaxation 
mechanism, operating on the same timescale of the internal motions, which is 
completely lost by the decoupling procedure. 

Finally, on the basis of these considerations, we have tried to interpret the 
experimental data on spin relaxation of deuterons in different positions for 5CB 
molecules. Any theoretical analysis should be confronted with its ability to interpret 
the following features of the NMR spectra: 

(a)  the position dependence of the relaxation rates along the alkyl chain; 
(b)  the frequency dependence of the relaxation rates; 
(c) the value of the 2, / A  ratio for all chain and ring deuterons; 
( d )  the discontinuity of the relaxation rates at the nematic-isotropic transition 
(e)  the relaxation behaviour of ring deuterons, in comparison with chain 

The theory employed here is rather sophisticated, and for this reason it  requires a 
detailed knowledge of the energetic and hydrodynamical properties of the system. As 
we have already mentioned, some of them are not easily available, e.g. the potential 
profile for torsional motions about the C,-C, bond. In the absence of unambiguous 
data, different choices have been considered. They range from the limiting case in 
which no rotations around this bond are allowed, to situations characterized by jumps 
between two or four stable sites, with a variety of torsional amplitudes and rates. The 
critical influence of the potential profile around the first chain bond upon the relaxation 
behaviour of the chain nuclear spins is shown by the numerical results. 

Furthermore, the effects of the surrounding 5CB molecules on the energy param- 
eters of a typical alkyl chain are also unknown. The estimate of the frictional drag is 
rather crude, and it  is expected only to reproduce qualitative trends, rather than 
quantitative effects. Finally, the relative importance of other relaxation mechanisms, 

deuterons. 
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618 A. Ferrarini et al. 

such as director fluctuations [30], slowly relaxing local torques [3 11 and instantaneous 
dimer formation, is difficult to assess. Because of all these limitations, the theoretical 
tool cannot give a quantitative interpretation of the experiments, but it provides a 
satisfactory understanding of the relevant factors which determine the complex 
dynamics of flexible molecules. 

Some ambiguities in the interpretation of the experimental behaviour emerge from 
a careful analysis of the results obtained by different choices of the input parameters. 
In fact it appears that for physically sensible choices of the parameters entering in the 
theory, the relaxation features indicated at points (a)-(d) are easily reproduced, but 
the ratio WCR/WC' poses particular problems. The value for this ratio is found exper- 
imentally to be of the order of unity both in nematic and isotropic phases. Such a 
value can be obtained theoretically if rotations about the C,-C, bond are not allowed, 
as shown in table 16. In this case, however, the diffusion tensor anisotropy appears 
to be too large, and the variation of the relaxation rates along the chain too 
pronounced. On the other hand, current values for the chain energy parameters, 
which allow an excellent interpretation of the chain ordering and dynamics, lead to 
a calculated value of about 3-4 for 9CR/9C1. A satisfactory compromise is achieved 
by slowing down the interconversion kinetics at  the C,-C, bond (c ;  = 0.5, 
c; = 0.005), and by taking D,,/DI = 20. However, the close similarity of the 
experimental relaxation times W C R  and 9'' suggests that recoil rotations should be 
considered explicitly, because they provide a motional process which tends to equalize 
ring and chain relaxation. This is an important question which certainly deserves 
careful attention. 

In general, changes of a torsional angle around a specific bond connecting two 
molecular fragments lead to rotations of both fragments with respect to the laboratory 
frame. Therefore, we should also consider the recoil rotations of the rigid core, with 
respect to the laboratory frame, as a result of the conformation transitions. A 
complete analysis of this phenomenon has been presented for the simple case of a 
molecule with a single internal degree of freedom in isotropic media [14]. The general- 
ization of the theory to molecules with several torsional angles in nematic solvents is 
a very difficult task, but some general considerations can still be drawn. The mag- 
nitude of the recoil rotations are determined by the relative size of the two rotating 
fragments, according to the corresponding friction matrices. Therefore, we can neglect 
the recoil rotations deriving from conformational transitions of the terminal 
methyelene groups of the chain. To simplify the problem further, we consider only the 
effects of internal rotations about the C,-C, bond, by modelling the core as a long 
rod, so that the frictional drag for displacements of the long axis is much larger than 
for rotations about the same axis. The reduction of the problem to one dimensional 
space allows us to specify the recoil rotation Ay around the long molecules axis [ 141 

where A0 is the change of torsional angle due to the conformational transition, while 
are the friction coefficients of the rigid core and of the chain, respectively. 

The negative sign in equation (54) implies that the recoil rotation of the rigid core 
occurs in the opposite direction of the change of the torsional angle. Crude hydro- 
dynamical calculations show that in 5CB the chain can assume values between 
one-half and twice the value for [,,,, depending on the conformational state of the 

and 
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chain. By assuming for simplicity z rcor, we obtain Ay = -A8/2, i.e. the 
conformational transitions of the first torsional angle lead to comparable reorien- 
tations of both the rigid core and the alkyl chain. Under these conditions, the 
conformational process influences the deuteron spin relaxation of the ring and chain 
moieties in a similar way. 

It is worth noting that the theoretical treatment presented here allows the com- 
putation of various kinds of correlation functions, relevant for different experiments 
in oriented phases. For example, first rank tensor properties are probed by dielectric 
relaxation measurements, which have been performed at various temperatures and for 
different geometries for the alkyl-cyanobiphenyl systems [32,33]. The low frequency 
shift exhibited at the nematic-isotropic transition by the component E, , (w)  of the 
complex dielectric permittivity tensor is immediately justified in terms of the onset of 
the mean torque potential, while the internal dynamics seems to have only minor 
effects on the shape of the dispersion and absorption curves. Preliminary calculations 
show that the very broad Cole-Cole plots obtained for the dielectric permittivity 
component E ,  (w) ,  measured with the electric field perpendicular to the nematic 
director, cannot be explained in terms of the orientational diffusion of the dipole in 
the anisotropic environment, even if the fluctuations of the molecular dipole induced 
by the conformational changes are taken into account. 

To conclude, we should mention a recent paper [34] in which a molecular dynamics 
simulation has been performed on 5CB. Given the timescale of the trajectories 
sampled by the calculations (60 ps), no significant reorientation or chain isomerization 
can occur, so that no significant comparison with our result can be made. The 
comparison between the detailed potential functions employed in that paper and the 
mean field potential introduced in [ I61 and adopted here may be of interest, but it goes 
beyond the scope of this work. It is however interesting to note that a six-minimum 
torsional potential was taken for the Co-C, bond. As in our calculations, the choice 
of a potential function with a number of minima larger than two appears more 
suitable to describe the torsional dynamics about that particular bond. 
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Appendix 
The components of the vector QJ12 in the basis functions 4k,(Q) = ,/[(21 + 1)/8n2] 

are calculated as 

(& (Q) I QJI2 (Q)) = J ( 2(2'; I ) )  n exp ( - V,'OrS/2kT) 

{ J dblab.ord sin (blab.ord Id& (blab.ord) 
r=0.2.4. . 0 
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where Z is the partition function, given by 

= 1 ($L(Q) I QY2(R)> 
J.1.k 

and I r ( x )  is an rth order modified Bessel function. Analogously, the components of 
the vectors d:) are computed as 

(4!,,k(Q)Q:'2(Q> I %o(QJ)> = J (2(2'zf I ) )  n( -)" exp ( -  V:""//2kT) 

2 
L(L + (i - 111 i) 1 { 1, dPlab.ord sin (Pl.b.ord)dgL,(Plab.ord) 

I=  - L.L(reven) 

x exp [ ~ ~ ~ ~ ( ~ 1 ~ b , 0 ~ d ) / ~ l ~ ~ r ~ , ~ [ ~ ~ ~ ~ 2 ( ~ l ~ b . o r d ) l }  

u b i  where the symbols ( o1 

(41) for the matrix representation of the operator 
;,) are 3j coefficients [35]. The brackets appearing in equation 

are given by 

x 9;:; (Qkol @kOl ). 

In this expression the Euler angles R' describe the transformation from the laboratory 
frame to a frame where the difference of the mean field potentials acting on the J th  
and on the J'th conformations, (Km' - 'm'), can be written as 

V/"' - 'Yr  
k T  = AAdk(8') + 2A;d;2(p')c0s(2y'), 

while the angles Rko, refer to the transformation from the latter to the molecular 
frame. 

If the overall diffusion tensor D" is assumed to be axially symmetric in the 
principal axis system of the ordering matrix S, the matrix elements of the operator 
describing the diffusion of the whole molecule, RJ, are calculated from 

( 4 k k ,  (')Iii, 1 4 2 k 2  (Q)> = 1 ($:!r (Qlab.ord) liiJ I$k,('lab.ord >>$:; (%d.mol >gk, (%rd.mol), 
r.3 

where (+~,(i&,b$,d)liiJ 1 4 ~ 3 ( ~ l a b , o r d  )> is the matrix representation of a diffusion 
operator with an axially symmetric diffusion tensor in a biaxial field (see equation (19)). 
In  contrast, if the principal axes of the diffusion tensor D" are assumed to coincide 
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with the molecular x ,  y ,  z axes, the matrix representation of a diffusion operator with 
axially symmetric diffusion tensor in a completely asymmetric potential has to be 
generated. 
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